Internal resistance practice question answers

1. As I rises terminal voltage of A falls (1) due to internal resistance of A/ "lost volts" (1) 2
(i) 'Lost volts' $V=I r=10.0 \times 0.40=4.0 \mathrm{~V}$ (1)
$V_{\mathrm{B}}=28.0-V_{\mathrm{A}}=28.0-(20.0+4.0)=12.0$ (1) 2
(ii) $P=V I=28.0 \times 10.0=280 \mathrm{~W}$

Power supplied $=280 W(1) \quad 1$
$\begin{array}{ll}\text { (iii) } & P=I 2 r=10.02 \times 0.40=40 \mathrm{~W} \\ & \text { Power wasted }=40 \mathrm{~W} \text { (1) }\end{array}$
(iv) Eff $=\frac{280}{320}=0.88=88 \%$ (1) 2

Advantage $=$ Renewable supply/last longer (1)
Disadvantage =Depends on illumination/high internal resistance/large array needed for power required (1)

2
2. Explanation: .
$I=E / r+R(\mathbf{1}) \quad 1$
Appropriate formula for cell E9:
C9 * D9 OR RI OR $1 \Omega \times 4$ A (1) 1
Appropriate formula for cell F 11
D11 *E11 OR VI OR 3A $\times 6 \mathrm{~V}$ OR C11 * D11 *D11
OR $R I^{2}$ OR $2 \Omega \times(3 \mathrm{~A})^{2}(1) \quad 1$
Short circuit current:
6 A (1) 1
Explanation:
r and R in series \rightarrow potential division (1) 1
as $R \uparrow, r$ constant $\rightarrow R$ has greater share of $12 \mathrm{~V}(\mathbf{1}) 1$
OR other valid argument
Sketch graph of power against resistance:

18 (1)
2 (1)
Shape including asymptote (1)
Comment:
Maximum when $R=r$ (1)
in accordance with maximum power theorem (1)
OR $P \rightarrow 0$ as $R \rightarrow \infty(\mathbf{1}) \quad$ Max 2
[11]

3. Meaning of m

$\times 10^{-3} \mathbf{(1)}$
1
Calculation of resistance for reading 3
$R=V / I$ OR $R=74 \times 10^{3} \mathrm{~V} \div 150 \times 10^{-9} \mathrm{~A}$ [ecf for milli] (1)
$R=4.9 \times 10^{5} \Omega(\mathbf{1})$
Calculation of power for reading 4
$P=I \times V$ OR $P=\frac{V^{2}}{R}$ OR $P=I^{2} R(\mathbf{1})$
$=210 \times 10^{-9} \mathrm{~A} \times 57 \times 10^{-3} \mathbf{(1)}$
$=1.2 \times 10^{-8} \mathrm{~W}$
Plotting points on graph
Two correct points (1)
Third correct point (1)
Best fit straight line for points as they appear on student's graph (1)
Predicting short-circuit current
Correct from graph, e.g 450 nA (1) 1
Suggested e.m.f
Correct from graph, or table, 110 mV (1) 1
Explanation of why voltage falls
Cell has internal resistance/ "lost volts" (1)
"Lost volts" = Ir, so lost volts increase as current increases
OR
$V=E-I r$, so V decreases as I increases (1) 2
4. Explanation of assumption that voltmeter does not affect values

Voltmeter has very high resistance/takes very small current (1) 1
Current through X
$4.8 \mathrm{~A} \div 6=0.8 \mathrm{~A}$
OR $48 \mathrm{~V} \div 60 \Omega=0.8 \mathrm{~A}(\mathbf{1})$
1

Value missing from E7
$P=I V$
$P=4.4 \mathrm{~A} \times 53 \mathrm{~V}=233 \mathrm{~W}$ (1) 1
Description of appearance of lamp X as lamps switched on
Gets dimmer
from table, voltage decreasing / current in X decreasing / power per lamp decreasing (1)
So P decreases (1)
Formula for cell C6
$I=\varepsilon / R_{t o t}(\mathbf{1})$
$I=120 /(15+B 6)(1)$
2
Effect of internal resistance on power
Power has a maximum value (1)
when external resistance $=$ internal resistance (1) 2

